[image:]
[image:]Loadbalancing ImageVault 4					
Performance report
[image:]
																		

Load balancing ImageVault 4

Performance report

Johan Magnusson
Product Manager
[bookmark: _Toc353435200][bookmark: _Toc277759851]Introduction
The purpose of this report is to show the effect of load balancing the ImageVault Core service.
[bookmark: _Toc353435201]Test Environment
[bookmark: _Toc353435202]Core service instances
The tests were executed using 3 different as virtual machines running the Core Service. Each virtual machine is running on a different virtualization host.
Test servers are virtual server with the following properties:
Guest OS: Microsoft Windows Server 2008 R2 (64-bit)
CPU: 1
Memory: 4096 MB
Bandwidth 1000 Mbit/s
[bookmark: _Toc353435203]Load balancing
The distribution of load was done using Microsoft IIS Application Request Routing.

Load balance algorithm: Weighted round robin.
Load distribution: Even distribution.
[bookmark: _Toc353435204]Load
Load was created using a .Net application running multiple threads. Each time a unique media format is requested.
First an API call is made to get the URL for the specified format. Secondly the requested image is fetched.
[bookmark: _Toc353435205]Tests
The purpose of the tests was to verify what impact load balancing of the ImageVault Core service would have on performance.
Test was executed both with previously converted images as well as requests for a new conversion every time.
The number of request and average response time was measured for the image delivery, hence include conversion time if format is not previously created.
[bookmark: _Toc353435206]Method
The test was executed in a similar manner as the test executed by Apica. The client was set up to start on a number of threads and the number of threads was increased for each test run. Each test run lasted 3 minutes and was preceded and followed by a warm up and cool down period.
[bookmark: _Toc353435207]Test runs

[bookmark: _Toc353435208]Pre converted images
In this test the images requested had been converted in advance, hence measuring the capability to deliver images.

[bookmark: _Toc353435209]Image conversions
In this test a new conversion was requested for each request, hence measuring the performance for converting images.

[bookmark: _Toc353435210]Conclusion
[bookmark: _GoBack]It is possible to view the distribution of request from Microsoft IIS Application Request Routing in the Internet Information Services (IIS) Manager. In all tests executed the distribution followed the expected values, as the requests were evenly distributed over the servers available in the cluster.
In the image delivery scenario we only see a minor increase in performance when using multiple core instances. The performance seen should correspond to a cold start of the system, once the system is up the IIS Kernel or User Mode cache should take over most of the load.
When looking at the performance for image conversions we can conclude that performance increase as more core instances are added. The shift in when response times are increasing also indicates that the system can handle more load when scaled out.
Total request
1 Core instance	1	2	4	8	10	20	40	80	1911	2896	3023	3116	3182	3207	3196	3133	2 Core instances	1	2	4	8	10	20	40	80	1669	3219	3745	3959	4025	4014	3987	3646	3 Core instances	1	2	4	8	10	20	40	80	1673	3549	3681	3893	4244	4335	4181	3792	# threads
reuests
Requests / s
1 Core instance	1	2	4	8	10	20	40	80	10.6	16.100000000000001	16.8	17.3	17.7	17.8	17.8	17.399999999999999	2 Core instances	1	2	4	8	10	20	40	80	9.3000000000000007	17.899999999999999	20.8	22	22.4	22.3	22.2	20.3	3 Core instances	1	2	4	8	10	20	40	80	9.3000000000000007	19.7	20.5	21.6	23.6	24.1	23.2	21.1	# threads
requests / s
Response time (average)
1 Core instance	1	2	4	8	10	20	40	80	5.3	16.8	72.5	186.1	234.1	513.4	1076.5	2240.6999999999998	2 Core instances	1	2	4	8	10	20	40	80	8.9	10.7	49.9	139.1	179	392.4	830.5	1874.8	3 Core instances	1	2	4	8	10	20	40	80	6.1	7.9	48.5	113.5	172.3	374.7	820.2	1840	# threads
ms
Total requests
1 Core instance	1	2	4	8	10	20	40	804	964	841	813	819	795	843	2 Core instances	1	2	4	8	10	20	40	761	1114	1180	1120	1206	1432	1462	3 Core instances	1	2	4	8	10	20	40	715	1347	1498	1563	1635	1647	1638	# threads
requests
Requests / s
1 Core instance	1	2	4	8	10	20	40	4.5	5.4	4.7	4.5	4.5999999999999996	4.4000000000000004	4.7	2 Core instances	1	2	4	8	10	20	40	4.2	6.2	6.6	6.2	6.7	8	8.1	3 Core instances	1	2	4	8	10	20	40	4	7.5	8.3000000000000007	8.6999999999999993	9.1	9.1999	999999999993	9.1	# threads
requests / s
Response time (average)
1 Core instance	1	2	4	8	10	20	40	103.4	167.4	386.8	834.2	1057.2	2220.9	4209.7	2 Core instances	1	2	4	8	10	20	40	95.4	156.9	305.8	645.6	742	1257.9000000000001	2475.9	3 Core instances	1	2	4	8	10	20	40	122.4	129.4	248.4	462	551.29999999999995	1093.5	2200.1	# threads
ms
	Meriworks AB
	Adress: Svensknabbevägen 17, 393 51 KALMAR · Tel +46 (0)480-42 60 60

	
	Fax +46 (0)480-42 60 79 60 · Web www.imagevault.se · E-post johan@imagevault.se

	
	Författare av dokument: Fredrik Därth · Sid 1 (av 6)

	Meriworks AB
	Adress: Svensknabbevägen 17, 393 51 KALMAR · Phone +46 (0)480-42 60 60

	
	Fax +46 (0)480-42 60 79 60 · Web www.imagevault.se · Email johan@imagevault.se

	
	Author: Fredrik Därth · Sid 6 (av 7)

image1.png

image2.tiff

image3.png

